Received 7 October 2005

Accepted 11 October 2005

Online 15 October 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.023 wR factor = 0.074 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Rerefinement of *catena*-poly[[tetraaquacobalt(II)- μ -pyrazine] phthalate] in a lower-symmetry space group

The polymeric title compound, $\{[Co(C_4H_4N_2)(H_2O)_4]-(C_8H_4O_4)\}_n$, when refined in *Imm2* from the diffraction intensities originally used for refinement in *Immm* [Yang, Li, Cao & Yao (2003). *Acta Cryst.* E**59**, m961–m963], is an ordered structure whose Co^{II} atom, pyrazine ligand and phthalate counter-ion lie on special positions. The metal atom and *N*-heterocycle have *mm2* site symmetry and the dianion *m* site symmetry.

Comment

For diffraction measurements that cannot be unambiguously assigned to a particular space group, the structure should preferably be refined in a centrosymmetric space group, even though the structure is disordered in this higher-symmetry setting (Marsh, 1986). As such, the structure of $[Co(H_2O)_4(C_4H_4N_2)](C_8H_4O_4)$, (I), was originally refined with disorder in *Immm*; a number of restraints were applied to the model, and the high residual index ($R_1 = 0.096$) was attributed to disorder and not to low quality of the measurements (Yang *et al.*, 2003).

The zinc analogue crystallizes with similar cell dimensions; the authors of that study refined the structure in *Imm2* because the compound exhibited second-harmonic generation (SHG) (Zhang *et al.*, 2005); the SHG test is one which is able to distinguish between centrosymmetric and non-centrosymmetric structures. Refinement of the cobalt compound in this space group led to a significantly improved R index ($R_1 = 0.023$). In this setting, the Co and pyrazine lie on special positions of *mm2* site symmetry and the phthalate on a special position of *m* site symmetry (Fig. 1). The phthalate is ordered; the anions surround the linear polycationic chain and interact with the chains through hydrogen bonds (Fig. 2 and Table 2).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A plot of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) -x, 1 - y, z; (ii) -x, y, z; (iii) x, 1 - y, z; (iv) x, y, 1 + z.]

Mo $K\alpha$ radiation

reflections

 $\theta = 2.9 - 28.4^{\circ}$

 $\mu = 1.28 \text{ mm}^{-1}$

T = 298 (2) K

Prism, orange $0.45 \times 0.28 \times 0.27$ mm

 $R_{\rm int}=0.018$ $\theta_{\rm max} = 27.5^{\circ}$

 $h = -12 \rightarrow 11$

 $k = -13 \rightarrow 13$

 $l = -9 \rightarrow 9$

Cell parameters from 2933

871 independent reflections

871 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

 $[Co(C_4H_4N_2)(H_2O)_4](C_8H_4O_4)$ $M_r = 375.20$ Orthorhombic. Imm2 a = 9.4033 (6) Å b = 10.2886 (7) Å c = 7.1791 (5) Å V = 694.55 (8) Å³ Z = 2 $D_x = 1.794 \text{ Mg m}^{-3}$

Data collection

Bruker APEX area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.545, T_{\max} = 0.723$
2928 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0542P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.023$	+ 0.0753P]
$wR(F^2) = 0.074$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.25	$(\Delta/\sigma)_{\rm max} = 0.001$
871 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
75 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	Absolute structure: Flack (1983),
	391 Friedel pairs
	Flack parameter: 0.02 (1)

Table 1

Selected geometric parameters (Å, °).

Co1-O1w	2.051 (1)	Co1-N2 ^{iv}	2.188 (4)
Co1-N1	2.194 (4)		
$O1w-Co1-O1w^i$	176.3 (1)	O1w-Co1-N1	88.1 (1)
$O1w-Co1-O1w^{ii}$	87.9 (1)	O1w-Co1-N2 ^{iv}	91.9 (1)
$O1w-Co1-O1w^{iii}$	92.0 (1)		

Symmetry codes: (i) -x, -y + 1, z; (ii) -x, y, z; (iii) x, -y + 1, z; (iv) x, y, z + 1.

Figure 2

A plot depicting the hydrogen bonds (dashed lines).

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01w - H1w1 \cdots O1$	0.84 (1)	1.87 (1)	2.709 (2)	174 (4)
$01w - H1w2 \cdots O1^{v}$	0.83 (1)	1.91 (1)	2.736 (2)	178 (3)

Symmetry codes: (v) $-x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

The C-bound H atoms were generated geometrically (C-H = 0.93 Å) and were treated as riding, with $U_{iso}(H)$ parameters set at $1.2U_{eq}(C)$. The two O-bound H atoms were refined with a distance restraint of O-H = 0.85 (1) Å; the $U_{iso}(H)$ parameters were freely refined.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; method used to solve structure: atomic coordinates taken from the Zn analogue; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The author thanks the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Marsh, R. E. (1986). Acta Cryst. B42, 193-198.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m961-m963.

Zhang, J., Li, Z.-J., Cao, X.-Y. & Yao, Y.-G. (2005). J. Mol. Struct. 750, 39-43.