Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.074$
Data-to-parameter ratio $=11.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Rerefinement of catena-poly[[tetraaquacobalt(II)-μ-pyrazine] phthalate] in a lower-symmetry space group

The polymeric title compound, $\left\{\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right\}_{n}$, when refined in Imm2 from the diffraction intensities originally used for refinement in Immm [Yang, Li, Cao \& Yao (2003). Acta Cryst. E59, m961-m963], is an ordered structure whose $\mathrm{Co}^{\mathrm{II}}$ atom, pyrazine ligand and phthalate counter-ion lie on special positions. The metal atom and N-heterocycle have $m m 2$ site symmetry and the dianion m site symmetry.

Comment

For diffraction measurements that cannot be unambiguously assigned to a particular space group, the structure should preferably be refined in a centrosymmetric space group, even though the structure is disordered in this higher-symmetry setting (Marsh, 1986). As such, the structure of $\left.\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{4}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$, (I), was originally refined with disorder in Immm; a number of restraints were applied to the model, and the high residual index $\left(R_{1}=0.096\right)$ was attributed to disorder and not to low quality of the measurements (Yang et al., 2003).

(I)

The zinc analogue crystallizes with similar cell dimensions; the authors of that study refined the structure in Imm2 because the compound exhibited second-harmonic generation (SHG) (Zhang et al., 2005); the SHG test is one which is able to distinguish between centrosymmetric and non-centrosymmetric structures. Refinement of the cobalt compound in this space group led to a significantly improved R index $\left(R_{1}=\right.$ 0.023). In this setting, the Co and pyrazine lie on special positions of $m m 2$ site symmetry and the phthalate on a special position of m site symmetry (Fig. 1). The phthalate is ordered; the anions surround the linear polycationic chain and interact with the chains through hydrogen bonds (Fig. 2 and Table 2).

Received 7 October 2005 Accepted 11 October 2005 Online 15 October 2005

Figure 1
A plot of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $-x, 1-y, z$; (ii) $-x, y, z$; (iii) $x, 1-y, z$; (iv) $x, y, 1+z$.]

Experimental

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$
$M_{r}=375.20$
Orthorhombic, Imm2
$a=9.4033$ (6) \AA
$b=10.2886$ (7) \AA
$c=7.1791(5) \AA$
$V=694.55(8) \AA^{3}$
$Z=2$
$D_{x}=1.794 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.545, T_{\text {max }}=0.723$
2928 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.074$
$S=1.25$
871 reflections
75 parameters
All H -atom parameters refined

Mo $K \alpha$ radiation
Cell parameters from 2933 reflections
$\theta=2.9-28.4^{\circ}$
$\mu=1.28 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, orange
$0.45 \times 0.28 \times 0.27 \mathrm{~mm}$

871 independent reflections
871 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-9 \rightarrow 9$
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0542 P)^{2}\right. \\ & +0.0753 P]\end{aligned}$ $+0.0753 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.35 \mathrm{e}^{\text {max }}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
391 Friedel pairs
Flack parameter: 0.02 (1)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1 w$	$2.051(1)$	$\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{iv}}$	$2.188(4)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.194(4)$		
$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 1 w^{\mathrm{i}}$	$176.3(1)$	$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{N} 1$	$88.1(1)$
$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 1 w^{\text {ii }}$	87.9 (1)	$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{iv}}$	91.9 (1)
$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 1 w^{\mathrm{iii}}$	92.0 (1)		

Symmetry codes: (i) $-x,-y+1, z$; (ii) $-x, y, z$; (iii) $x,-y+1, z$; (iv) $x, y, z+1$.

Figure 2
A plot depicting the hydrogen bonds (dashed lines).

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1w-H1w1 $\cdots \mathrm{O} 1$	$0.84(1)$	$1.87(1)$	$2.709(2)$	$174(4)$
O1 $^{\mathrm{H}}-\mathrm{H} 1 w 2 \cdots 1^{v}$	$0.83(1)$	$1.91(1)$	$2.736(2)$	$178(3)$

Symmetry codes: (v) $-x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

The C -bound H atoms were generated geometrically $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and were treated as riding, with $U_{\text {iso }}(\mathrm{H})$ parameters set at $1.2 U_{\text {eq }}(\mathrm{C})$. The two O -bound H atoms were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$; the $U_{\text {iso }}(\mathrm{H})$ parameters were freely refined.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; method used to solve structure: atomic coordinates taken from the Zn analogue; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The author thanks the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Marsh, R. E. (1986). Acta Cryst. B42, 193-198.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. \& Ng, S. W. (2003). Acta Cryst. E59, m961-m963.
Zhang, J., Li, Z.-J., Cao, X.-Y. \& Yao, Y.-G. (2005). J. Mol. Struct. 750, 39-43.

